3、MOV亚敏电阻
MOV则是Metal Oxide Varistor,也就是金属氧化物压敏电阻,是压敏电阻里比较常见的一种。压敏电阻主要用来对付浪涌电压,一般来说会与被保护器件或装置并联使用,最大特点是其两端电压低于额定值时,其内部电阻会比较大,而当两端电压超过额定值后,其阻值会迅速变小,这样就使得流过它的电流激增。因此当压敏电阻的两极间出现浪涌电压的时候,压敏电阻就可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
而除了NTC与MOV外,部分高端电源为了进一步抑制浪涌电流和浪涌电压,还会用上TVS((Transient Voltage Suppressor,瞬态抑制二极管)和气体放电管,当浪涌到来之时,TVS首先启动将浪涌电压控制在一定水平内,然后NTC和MOV会再进行第二次的控制,进一步抑制浪涌电流和浪涌电压,随后激活气体放电管,尽可能地消除浪涌。当然这个是比较理想的状态,目前TVS与气体放电管基本上是高端电源的专属,只有NTC和MOV才称得上是PC电源的标配。
二、输出保护
除了输入保护之外,PC电源在输出上也有相应的保护措施。如果说输入保护的对象更多地是电源自身,那么电源输出保护更多地就是出于对整机安全的考虑了。目前PC电源的输出保护主要有SCP、OCP、OVP、OTP四种,这四种也是英特尔电源设计规范中要求必须具备的电源输出保护措施。而部分高端电源则会进一步配置OPP和UVP等进阶保护措施,确保电源在各种异常状态下都能及时关断输出。
1、SCP短路保护(Short Circuit Protection)
顾名思义,SCP短路保护就是在负载短路的情况下,电源主动切断输出,以保障负载不被损坏的措施。按照英特尔的电源设计规范,PC电源的每一路输出都必须具备短路保护功能,而且在SCP短路保护实施的情况下,电源要能做到关断并锁死出现短路的线路,只有彻底断电,并排除负载的短路后电源才会恢复正常工作。
SCP短路保护的判断机制是被检测线路的两端阻抗小于0.1Ω,需要注意的是电源输出的短路保护并不一定会激活电源输入的短路保护,更多时候只是电源自己关断输出。只有非常极端的情况,会导致电源的输入与输出的短路保护都被同时激活。
2、OCP过流保护(Over Current Protection)
OCP过流保护与SCP短路保护是经常被弄混淆的一对,但是两者的用途却完全不同。SCP短路保护是以被测线路的两端阻抗为判断标准,而OCP则是以被测线路的电流为判断标准,响应时间比起SCP也会要更长,当线路的输出的电流大于指定值后,电源就会关断该线路的输出,以保证负载与电源自身的安全。
3、OVP过压保护(Over Voltage Protection)
OVP过压保护则与OCP过流保护类似,是线路输出电压超过标准之后及时关断输出的一种保护措施。由于过高的电压可能会击穿负载设备的芯片,因此过电压保护的响应都是非常迅速的,同时它也是PC电源必备的保护措施。
目前英特尔的电源设计规范对过电压保护的设定值是有给出推荐的,以+12V为例,其OVP过电压保护的激发点最低是13.4V,最高是15.6V,通常点是在15V,具体数值可由厂商根据产品自行制定。
4、OTP过温保护(Over Temperature Protection)
OTP过温保护则与电源的工作温度有关,一般来说是依靠电源内部的各种温度探头来进行控制的。当电源内部温度或者指定电路的温度超过标准后,电源会限制甚至是关断相应的输出,以确保自身与负载的安全。一般来说过温保护的激活都是因为散热风扇失效或者电源输出过载导致的,更多时候会是后者,因此OTP过温保护被激活前,往往会有其它保护措施已经被激活了。
5、OPP过功率保护(Over Power Protection)
与上述四种保护措施相比,OPP过功率保护并不是电源设计规范中要求的必选项目,但现在越来越多的电源厂商都用它来作为OCP过流保护和OVP过电压保护的补充。OPP过功率保护是指电源输出功率至超过指定值或者过载超过指定时间后关断输出的措施。在部分应用环境中,电源过载未必会激活OVP或OCP,但过载确实会让电源处于不利的工作状态,长期过载也很容易引发元器件的故障。因此OPP过功率保护的存在价值就是确保电源不会严重过载或者长时间过载,其与OCP与OVP的关系是补充而不是替代。